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Abstract. Lasers essentially consist of single-mode optical cavities containing two-level atoms with a
supply of energy called the pump and a sink of energy. perhaps an optical detector. The latter converts the
light energy into a sequence of electrical pulses corresponding to photo-detection events. It was predicted
in 1984 on the basis of Quantum Optics and verified experimentally shortly thereafter that when the pump
is non-fluctuating the emitted light does not fluctuate much. Precisely, this means that the variance of the
number of photo-detection events observed over a sufficiently long period of time is much smaller than the
average number of events. Light having that property is said to be *sub-Poissonian’. The theory presented
rests on the concept introduced by Einstein around 1903, asserting that matter may exchange energy with a
wave at angular frequency o only by multiples of fies. The optical field energy may only vary by integral
multiples of e as a result of matter quantization and conservation ol energy. A number of important
results relating 1o isolated optical cavities containing two-level atoms are first established on the basis of
the laws of Statistical Mechanics, Next. the laser system with a pump and an absorber of radiation is
treated. The expression of the photo-current spectral density found in that manner coincides with the
Quantum Optics result. The concepts emploved in this paper are intuitive and the algebra is elementary.
The paper supplements a previous tutorial paper (J. Arnaud. Opt. Quantum. Electron.. 27 1995) in
establishing a connection between the theory of laser noise and Statistical Mechanics.
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1. Introduction

The purpose of this paper is to present a derivation of the essential formulas
relating to sub-Poissonian light generation in a simple and self-contained
manner. This is done on the basis of a theory in which the light field enters
through its energy. Only single-mode cavities incorporating emitting and
absorbing atoms are considered. Some Quantum-Optics effects (Elk 1996)
that become inconspicuous when the number of atoms is large are neglected.
The paper does not assume specialized knowledge from the reader. but some
understanding of general concepts relating to random variables (mean,
variance) and stationary random functions of time (spectral densities)
(Papoulis 1965). may be useful.

Laser light possesses high degrees of directivity and monochromaticity. The
intensity fluctuations. though relatively small, are of practical significance in
some applications: transmission of information by means of optical pulses.
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Fig. 1. Schemematic representation of a faser. The single-mode cavity (shown as a gray oval) incorporates
active two-level atoms (only two are shown on the left. one in the upper state and one in the lower state)
and absorbing (detecting) atoms (only one is shown on the right). The pump raises active atoms from their
lower to upper states at some prescribed rate #. Photo-detection events occur at rate 2. At low fre-
quencies. #r) = 7 (1.

measurement of small attenuations. or interferometric detection of gravita-
tional waves. Lasers essentially consist of single-mode optical cavities con-
taining resonant atoms with a supply of energy called the pump and a sink of
energy, presently viewed as an optical detector (Fig. 1). The latter converts
light into a series of identical electrical pulses, referred to as ‘photo-detection
events' (Koczyk et al. 1996). If the events are independent of one another, the
light impinging on the detector is said to be “Poissonian’, and the photo-
current fluctuations are at the ‘shot-noise level’. But under some circum-
stances detection events occur more regularly. in which case the light is said
to be *sub-Poissonian’. Light of that nature has been first observed by Short
and Mandel (1983). Subsequently. Yamamoto and Imamoglu (1999) per-
formed a remarkable series of experiments on laser diodes. They observed a
reduction by up to a factor of 10 below the shot-noise level. The correlation
between the number of upper-state atoms in the cavity and photo-detection
events has also been measured (Richardson and Yamamoto 1991).

A single-mode optical cavity resonating at angular frequency @ may be
modeled as an inductance-capacitance (LC) circuit with LCe?” = 1. The ac-
tive atoms, located between the capacitor plates. interact with a spatially
uniform optical field through their electric dipole moment (see, for example.
Milonni and Eberly 1988). In this idealized model. the field angular frequency
"seen’ by the atoms is equal to @'. The two-level atoms (with the lower level
labeled *1° and the upper level labeled '27) are supposed in this paper to be
resonant with the field. This means that the atomic levels 1 and 2 are sepa-
rated in energy by /iw. where /i denotes the Planck constant divided by 2z.
The energy unit is taken equal to fiew, for simplicity. The pumping rate ¢,

"n the present idealized model. no momentum is transferred between the field and the atoms, so that the
Maxwellian atomic-velocity distribution is undisturbed, An advanced relativistic treatment can be found
in Ben-Ya'acov (1981).
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defined as the number of atoms raised to their upper state per unit time, is
supposed to be a prescribed function of time. i.c.. to be independent of the
laser dynamics. This condition is actually achieved in the case of semicon-
ductors with the help of high-impedance electrical sources. It has been shown
further (Khazanov et al. 1990: Ritsch er al. 1991: Ralph and Savage 1993)
that sub-Poissonian output light statistics should be obtainable also from
four-level atom lasers with incoherent optical pumping’. This important
observation escaped the attention of previous laser theorists. For such four-
level lasers the expressions obtained from the present theory are identical to
those previously reported (Chusseau and Arnaud 2001). The output light
fluctuates at only one-third of the shot-noise level.

The light-energy absorber is modeled as an ideal optical detector that
generates a series of identical electrical pulses. the energy lost by the field
being entirely dissipated in the detector load. Unlike active atoms, detector
atoms remain most of the time in the ground state, with quick non-radiative
decay after an excitation event. For the sake of conceptual clarity. the ab-
sorber of radiation is supposed to be located within the optical cavity as in
the Sargent er al. (1974) classical text-book®. The main purpose of this paper
is to derive an expression of the photo-current spectral density. particularly in
the limit of small Fourier (or *baseband’) frequencies”.

“ In the case of four-level atom lasers (with levels labeled from 0 1o 3. the working levels being those
lubeled | and 2). strong optical pumping resonant with levels (0 and 3 provides a constant probability that
electrons in level 0 be transfered to level 3 per unit time. and (almost) the same probability that clectrons in
level 3 be transfered to level 00 The detected-light Nuctuations may be sub-Poissonian at zero baseband
frequency. Precisely. the spectral density is one third of the shot-noise level under ideal conditions
(negligible spontancous decay. negligible optical loss. and quick decay from level 3 1o level 2), This
desirable behavior results from fevel O population Auctuations.

* In our model. detection (linear absorption) is supposed for the sake of simplicity to occur within the
optical cavity. But no difference of behavior is observed when a laser beam is absorbed externally without
reflection. rather than internally. at the same average rate. It is therefore expected that the present theory be
applicable to reflectionless external detectors. In open-space configurations. legitimate questions could be
raised in connection with the law of causality. It is therefore important to emphasize that only singlesmode
cavities are considered in the present paper. and that the concept of propagating light is not relevant. Note
further that the theory would hold just as well if the optical resonator were replaced. for example. by an
acoustical resonator at the same frequency. The wave is localized. and its physical nature is unimportant.
* In Optical Communications. Q is often called ‘baseband” angular frequency and @ ‘carrier’ angular
frequency. It is a common practice to consider only positive buseband frequencies. so that factors of 2 may
arise as one goes from the Physies 1o the Enginecring literature. The time dependence at baseband
requencies is denoted in this paper by: exp(j€dr). To define the photocurrent spectral density. consider a
particular (experimental or computer-generated) run lasting from 7 = 0 1o ., the photodetection events
occurring at imes .02, ... . 4. ... The detection rate 2(7) is defined as the sum over§ of dé(r — 1;). where d(-)
denotes the Dirac distribution. The detector electrical current. if desired. would be obtained by multiplying
J(1) by e. the absolute value of the electron electrical charge. The (real, non-negative) spectral density
SaplQ) of AQ = Q1) — (©) isdefined as: (| exp(j&r,) /2. where brackets denote an AVerage over many
runs, and Q= 2an/t,. with n=1,2... This expression 15 accurate il the measurement time 7, is
sufficiently large. In the special case where the photo-detection events are independent of one another. and
uniformly distributed (uniform Poisson process), we have Sap(82) = (0), a relation usually referred (o as
the “shot-noise formula’. The variance of the number of events occurring during some time T is in that case
equal to the average number of events. (see Equation (3.37) of Papoulis 1963),
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Consider now some theories of sub-Poissonian light generation. The main
concept of Quantum Optics. introduced by Dirac in 1927, is that the field in
a cavity should be treated as a quantized harmonic oscillator. Following
Dirac’s lead. laser theorists, initially, were mostly concerned with the state of
the cavity field. But Golubev and Sokolov (1984), carefully distinguished the
fluctuations of the field in the cavity from those of the detection rate. They
further pointed out that when lasers are driven by non-fluctuating pumps. the
emitted light should be sub-Poissonian. Similar results were subsequently
obtained by Yamamoto and Imamoglu (1999) (see also Meystre and Walls
1991: Walls and Milburn 1994: Mandel and Wolf 1995: Davidovitch 1996).
These authors employed various approximations of the laws of Quantum
Optics. and various models to describe non-fluctuating pumps. No approx-
imation is made in the recent numerical work of Elk (1996). But because the
computing time grows exponentially with the number of atoms present in the
cavity. the author is able to give results only for up to five atoms. Even with
few atoms. some tvpical features of Quantum Optics (the so-called trapped
states) get washed out, so that simplified theories may be adequate. Loudon
(1983) and Jakeman and Loudon (1991) have treated the evolution in time of
the number of photons in a laser amplifier on the basis of a theory in which
the optical field is not explicitly quantized. as is done here. Such theories are
able to describe sub-Poissonian light when the detecting atoms are included
in the system description®. Accurate noise sources have been obtained by
Gordon (1967, see Section 5 entitled “The generalized Wigner density and the
approximate classical model’) through symmetrical ordering of operators.
Gordon did not address, however, the case of non-fluctuating pumps. Ap-
plication of the Gordon formalism to non-fluctuating-pump lasers was made
independently in 19871988 by Katanaev and Troshin (1987) and this author
(Arnaud 1988). A discussion is given by Nilsson (in: Yamamoto 1991).

Theories in which the atoms are quantized but the optical field is not
directly quantized are usually labeled ‘semiclassical’. However. because this
adjective may cause confusion with alternative theories” the present theory

 Many authors attempted 1o avoid the intricacies of ficld quantization. But while there is essentially only
one quantum theory, there exist many distinet theories in which the field is treated in a classical manner.
When the operators entering in the exact Quantum Optics theory are normally ordered. linearized. and the
operator character of the field is ignored. a theory emerges called in the Optical-Engineering literature the
‘phasor’ theory. According 1o that theorv. quantum noise would be caused by the field spontancously
emitted by atoms in the excited state. But a detailed comparison (Arnaud and Estéban 1990, see Appendix
B) shows that the phasor theory. though plausible on some respects. is unable to explain the origin of sub-
Poissonian light. On the other hand. Funk and Beck (1997), Raymer (1990), and Savage (1988). note that
“The observed sub-Poissonian statistics are unexplainable using classical and semi-classical theories™. This
statement applies o the usual semiclassical theories in which the absorber is forbidden to react on the field.
But a key point of the present theory is that absorbers do react on the field. The observation that ‘Sub-
Poissonian statistics are possible only for a non-classical field” (Mandel and Wolf 1995) is meaningful in
the context of Quantum Optics. but not in the context of the present theory since the “state” of the field (in
the Quantum Optics sense) is not considered.
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has been called simply “classical’, to emphasize that the light field enters only
through its energy. a classical quantity. But the reader is warned that the
theory is not strictly classical. Randomness enters because the atomic tran-
sitions obey a probability law rather than a deterministic law. Note also that
the expression ‘rate equation” employed in the title sometimes refer to the
time evolution of average quantities, and random fluctuations are ignored. In
this paper. the expression ‘rate equation’ is understood in a broader sense as.
¢.g.. in the paper by Ralph and Savage (1993).

The theory presented rests first of all on the concept introduced by Einstein
carly in the previous century asserting that matter may exchange energy with
a wave at angular frequency @ only by multiples of i (Kuhn 1987). The law
of energy conservation in isolated systems entails that. if the matter energy is
quantized, the field energy may only vary by integral multiples of /. Thus.
no independent degree of freedom is ascribed to the field. This is in sharp
contrast with the Quantum Optics view-point. The physical picture that
emerges from the present theory is that laser-light fluctuations are caused by
the random stimulated transitions responsible for light emission and ab-
sorption®. If the number of atoms in the upper state is denoted by n and the
number of light quanta’ in the cavity by m. n + m is a conserved quantity in
isolated systems. It may vary only in response to the pump generation rate or
the detector absorption rate.

The paper is organized as follows. It is first observed in Section 2 that
useful information on laser light may be obtained by considering isolated
optical cavities containing atoms in a state of equilibrium. and using the
methods of Statistical Mechanics (for an introduction to that field. see for
instance Schroeder 1999).

When the total system (matter + field) energy is sufficiently large, the
equilibrium state is highly non-thermal. In fact. the gain saturation mecha-
nism that characterizes laser operation is at work in the isolated system as
well: Whenever the light intensity exceeds its average value there is a decrease
of the number of atoms in the excited state (through energy conservation). and
therefore a reduction of the total probability that a stimulated emission event
will occur within the next elementary time interval. This effect prevents the
light intensity from varying much. The great interest of the laws of Statistical
Mechanics is that they provide important informations about the equilibrium
state without having to consider in detail how the system evolves in the course
of time. Precisely. we find that the variance of the number of light quanta in

" During a jump from one state to another, an atom is in a state of superposition. But such states need not
be considered explicitly as only global conservation laws are being emploved (quantum jumps are
discussed. e.g.. Greenstein and Zajone 1995). Likewise. the interaction energy that may exist during a jump
needs not be considered explicitly,

" The word *photon” suggesting that light consists of tiny particles moving in space should better be
avoided in the context of this paper. see the interesting paper by Lamb (1993),
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the cavity is half the average number of quanta. that is. the field statistics is
sub-Poissonian. This result is of direct practical significance if the light energy
contained in the cavity is allowed to radiate into free-space at some instant.
The emitted light pulse is indeed sub-Poissonian. though not fully "quiet’.

In Section 3. the equilibrium situation enables us to recover the Einstein
prescription asserting that the probability that electrons be promoted to
upper levels is Cm and the probability that they be demoted to lower levels is
C(m ~+ 1). where m denotes the number of light quanta in the cavity and C a
constant proportional to the Einstein B-coefficient of stimulated emission and
absorption. The equilibrium situation provides the rate at which light quanta
would be absorbed at high Fourier frequencies.

But. in order to obtain accurately the rate at any Fourier frequency. it is
necessary to include explicitly pump fluctuations and the reaction of the
absorbed rate on the field (see Section 4). An appendix clarifies the fact that.
even though no entropy is ascribed to the field in the present theory. the
isolated system entropy increases when some piece of matter is introduced
into an initially empty cavity. as the second law of Thermodynamics requires.
It is shown that the entropy that Quantum Optics ascribes to single-mode
fields is the difference between the system entropy and the average matter
entropy.

2. Isolated cavities in a state of equilibrium

Consider N identical two-level atoms. For each atom, the zero of energy is
taken at the lower level and the unit of energy at the upper level (typically.
I €V). The atoms are supposed to be coupled to one another so that they
reach a state of equilibrium before other parameters have changed signifi-
cantly. The strength of the atom-atom coupling. however. needs not be
specified further. The atoms are supposed to be at any time in either the
upper or lower state. The number of atoms that are in the upper state is
denoted by n. and the number of atoms in the lower level is therefore N — n.
According to our conventions. the atomic energy is equal to ». Its maximum
value N occurs when all the atoms are in the upper state. There is population
inversion when the atomic energy n > N /2.

The statistical weight W (n) of the atomic collection is the number of dis-
tinguishable configurations corresponding to some total energy n. For two
atoms (N = 2), for example. W(0) = W(2) =1 because there is only one
possible configuration when both atoms are in the lower state (n =0), or
when both are in the upper state (n = 2). But (1) = 2 because the energy

n = 1 obtains with either one of the two (distinguishable) atoms in the upper

state. For N identical atoms, the statistical weight (number of ways of picking
up # atoms out of N) (Papoulis 1965, p. 38) is
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N!
W)= —"
() nl(N —n)l’ ()

Note that W(0) = W(N)=1 and that W(n) reaches its maximum value
at n=N/2 (supposing N even). with W(N/2) approximately equal to
2% /2/zN. Note further that

Y
Z=Y " W(n)=2". (2)
=0

Consider next an isolated single-mode optical cavity (see Fig. 1 without
the pump and the detector), containing N resonant two-level atoms. The
atoms perform jumps from one state to another in response to the optical
field so that the number of atoms in the upper state is a function n(r) of
time. If m(r) denote the number of light quanta at time /. the sum
n(t) +m(t) is a conserved quantity (essentially the total atom +field en-
ergy). Thus, m jumps to m —1 when an atom in the lower state gets
promoted to the upper state, and to m + 1 in the opposite situation. If N
atoms in their upper state are introduced at ¢ =0 into the empty cavity
(m =0), part of the atomic energy gets converted into field energy as a
result of the atom-field coupling and eventually an equilibrium situation is
reached. The basic principle of Statistical Mechanics asserts that all states
of isolated systems are equally likely. Accordingly. the probability P(m)
that some m value occurs at equilibrium is proportional to W(N — m).
where W(n) is the statistical weight of the atomic system defined in (1)
(see Appendix B of Arnaud er «l. 1999). As an example. consider two
(distinguishable) atoms (N=2). A microstate of the isolated (mat-
ter + field) system is specified by telling whether the first and second atoms
are in their upper (1) or lower (0) states and the value of m. If the total
energy is U = 2. the complete collection of microstates (first atom state.
second atom state. field energy), is: (1.1.0), (1.0,1). (0.1.1) and (0.0.2).
Since these four microstates are equally likely. the probability that m = 0
is proportional to 1, the probability that m = 1 is proportional to 2. and
the probability that m = 2 is proportional to 1. This is in agreement with
the fact stated earlier that P(m) is proportional to W(N — m). After nor-
malization, we obtain for example that P(0) = 1/4.

The normalized probability reads in general

W(N — m) N!

o) = = N — )i (3)

It is shown in the Appendix that the system entropy S(7) increases from
S(0) = In[W(N)] = 0 at the initial time (m = 0. n = N). to Sleo)=n{Z] =
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N In(2) when the equilibrium state has been reached. Note that no entropy is
ascribed to single-mode fields. as they are fully characterized by their energy.
The moments of m are defined as usual as

.
m'y = Z m" P(m). (4)

=0

where brackets denote averagings. It is casily shown from (3), (4) that
(m) = N/2 and var(m) = (m*) — (m*) = N/4. Thus the number m of light
quanta in the cavity fluctuates. but the statistics of m is sub-Poissonian, with
a variance less than the mean.

The expression of P(m) in Equation 3 just obtained has physical and
practical implications. Suppose indeed that the equilibrium cavity field is
allowed to escape into free space. thereby generating an optical pulse
containing m quanta. It may happen. however. that no pulse is emitted
when one is expected. causing a counting error. From the expression (3)
and the fact that (m) = N /2. the probability that no quanta be emitted is
seen to be P(0) =4 ", For example. if the average number of light
quanta (m) is equal to 20, the communication system suffers from one
counting error (no pulse received when one is expected) on the average
over approximately 10" pulses. Light pulses of equal energy with Pois-
sonian statistics are inferior to the light presently considered in that one
counting error is recorded on the average over exp((m)) = exp(20) =~
05z 10° pulses (see, for example, p. 276 of Milonni and Eberly 1988).

3. Time evolution of the number of light quanta in isolated cavities

Let us now evaluate the probability P(m. ) that the number of light quanta
be m at time ¢. Note that here m and ¢ represent two independent variables. A
particular realization of the process was denoted earlier m(z). It is hoped that
this simplified notation will not cause confusion.

Let E(m)dt denote the probability that. given that the number of light
quanta is m at time ¢, this number jumps to /m + 1 during the infinitesimal
time interval [1. ¢ + dr]. and let A(m) dt denote the probability that m jumps to
m — 1 during that same time interval (the letters £ and 4 stand respectively
for *emission” and ‘absorption’). P(m.t) obeys the relation

Plm.t +dt) =Pm+ 1.0)A(m+1)de + P(m — 1.0) E(m — 1) dr
+ P(m.t) (1 —A(m)dt — E(m)dt). (5)

Indeed. the probability of having m quanta at time + dz is the sum of the
probabilities that this occurs via states m + 1, m — 1 or m at time #. All other
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possible states are two or more jumps away from m and thus contribute
negligibly in the small dr limit (Gillespie 1992, p. 381). After a sufficiently
long time. one expects P(m.t) to be independent of time, that is:
Plm.t+dt) = P(m.1) = P(m). It is easy to see that Equation (5) satisfies this
condition if

Pim—+1)A(m+1) = P(m)E(m). (6)
This "detailed balancing™ relation holds true because m cannot go negative
(Gillespie 1992, p. 425). When the expression of P(m) obtained in Equa-

tion (3) is introduced in Equation (6). one finds that

E(m) Pim+1) N-—m

= = : 7
Alm+1) P(m) m 1 (7)

a relation that admits the solution
E(m)=(N—=m)(m+1), A(m)=m". (8)

It is natural to suppose that the probability £ of atomic decay is propor-
tional to the number » of atoms in the upper state, and that the probability 4
of atomic promotion is proportional to the number ¥ — n of atoms in the
lower state. Thus. we introduce the functions of two variables (1. m)

E(n.m)=n(m+1). A(n.m)= (N —n)m. (9)

with the understanding that £(m) = E(N — m.m) and A(m) = AN — m.m).
These relations hold within a proportionality factor. Setting this propor-
tionality factor as unity amounts to fixing the time scale. The expressions in
Equation (9) say that the probability that an atom gets promoted to the
upper level in the time interval [r.7 + dr] is equal to mde, while the probability
of atomic decay is (m + 1) dr. These expressions were obtained by Einstein in
1917 in a somewhat different manner®.

" Assuming that the atoms emit or absorb a single light quantum at a time {"one-photon’ pracess), the
strietly-classicul limit tells us that the probability that an atom in the upper state decays must be a linear
function ol . 1.¢.. we must have E(n.m) = nlam + b). where a. b and later ¢. d are constants, Likewise. the
probability of atomic promotion must be of the form: A(m) = (N — u)(em + d). But. furthermore. A is
required to vanish for m = 0 since. otherwise. m could go negative. Accordingly, ¢ = 0. Remembering that
=N —m. we find upon substitution of E(m) = (N —m){am — b} and A{m) = mem in the detailed-
balancing relation and simplifving that: am + b = em < ¢, a relation which is satisfied for all m values only
if @ = ¢ (equality of stimulated emission and absorption coefficients), and b = ¢ = a. To within a constant
factor. we have therefore E(n.m) = nim + 1). and A(n.m) = (N — n)m. relations discovered by Einstein at
the turn of the previous century, Note that the “1” in the term m — 1 of E{n.m) is sometimes ascribed to
spontancous emission in the mode. The lack of symmetry between m + | (emission) and m (absorption) is
only apparent. Il indeed the field energy is defined as m— 1/2. upward and downward transition
probabilities may be both written as the arithmetic averages of the field energy before and after the jump.
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Let us now restrict our attention to the steady-state regime and large values
of N. Since m is large. the ‘1" in the expression m + 1 of E(m) may be ne-
glected. Furthermore, in that limit. m may be viewed as a continuous function
of time with a well-defined time-derivative. Because the standard deviation
N /4 of m is much smaller than the average value. the so-called "weak-noise
approximation® is permissible (Gillespie 1992). Within that approximation.
the average value (f(n.m)) of any smooth function f(n.m) may be taken as
approximately equal to f({(n). (m)).

The evolution in time of a particular realization m(f) of the process obeys
the classical Langevin equation

dm .
— =& — . (10)
d¢

where
E=E(m)+elt), o =Alm)+all). (11)

In these expressions. e(r) and a(f) represent uncorrelated white-noise pro-
cesses whose spectral densities are equal to £ = E((m)) and 4 = A((m)). re-
spectively”. Without the noise sources, the evolution of m in Equation (10)
would be deterministic, with a time-derivative equal to the drift term
E(m) — A(m). If the expressions in Equation (8) are employed. the Langevin
Equation (10) reads

dm 5
—=Nm-—-2m +¢—a. R
dt (12)

Se—a=E+4=N{m)=N?/2.

where the approximation N > | has been made.

Let m(t) be expressed as the sum of its average value (m) plus a small
deviation Am(t), and Nm — 2m° in Equation (12) be expanded to first order.
A Fourier transformation of Am(r) with respect to time amounts to replacing
d/dr by jQ*. The Langevin equation now reads

iQAm=-NAm+e—a, Seo=N/2. (13)

where m has been replaced by its average value N /2.

* A formal proof of the validity of the Langevin equation will not be given here. Instead. it will be shown
that the variance of nr obtained from the Langevin equation coincide with the result obtained directly from
Staustical Mechanics.

RATE EQUATION THEORY OF SUB-POISSONIAN LASER LIGHT 403

Since the spectral density of z(¢) = ax(¢), where a = @' + ja” is a complex
number and x(¢) a stationary process. reads: S-(Q) = |a|~5,(Q). one finds

from Equation (13) that the spectral density of the Am() process is

N%/2

et S

(14)

The variance of m is the integral of Sa, () over frequency (Q/27) from —oc to
+noc. that is: var(m) = N /4 in agreement with the previous result in Section 2.

Suppose now that a small absorbing body. perhaps a single atom that
remains most of the time in its lower state as discussed earlier. is introduced
in the cavity. One expects that this unique atom will not affect significantly
the average value and the statistics of m for some period of time. If m were
non-fluctuating, the probability that a detection event occurs during the time
interval [r.r + dr], divided by dr. would be a constant. This property defines
the Poisson process. Since m actually suffers from the fluctuations discussed
earlier in this section. the detection rate is super-Poissonian, with a spectral
density that exceeds the average detection rate.

The expression for the detection rate has the same form as the one in-
troduced earlier for the stimulated absorption rate 4. the only difference
being that in the detector atoms remain in the lower state most of the time, as
discussed in the introduction. Accordingly

d=am+q. AOQ=zxAm+q, (15)

where = denotes a constant. The noise sources e(t). a(t). and ¢(7) are un-
correlated white-noise processes of spectral densities £, A, and Q = a(m),
respectively.

The spectral density of the detection rate fluctuation AQ defined in
Equation (15) may be obtained directly from Equation (14) since ¢(¢) is
presently supposed to be uncorrelated with the other noise sources

2 - 1'\';: 2
SA{_){Q) = ‘}!'S.ﬁm(g) s Q - x;ﬁ/ﬂl T Q (16)

Consideration of optical cavities close to a state of equilibrium therefore
provides some information concerning the detection rate statistics. But the
conclusion that the detection rate fluctuations always exceed the shot-noise
level holds true only when Q > /zN. After a sufficiently long time, even a
single absorbing atom affects the statistics of m in such a drastic way that the
result in Equation (16) becomes invalid. A true steady-state may be obtained
only if a pumping mechanism compensates for the energy loss caused by
light-quanta absorption. The accurate result. to be given next. shows that. at
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low frequencies. the detection rate depends in a crucial way on the pump
fluctuations.

4. Laser noise

Lasers are open systems with a source of energy called the pump. and a sink
of energy presently viewed as an ideal optical d::l::clf)r. It is naﬂllural to sup-
pose that the probabilities of atomic decay or atomic promotion that were
found earlier consistent with the laws of statistical mechanics, still hold when‘
there is a supply of atoms in the upper state (the pump), and an absorber of
light energy (the detector). _ _

“The evolution equation for the number m of light quanta is thus L_wbtamcd
by subtracting the loss rate 2 from the right-hand-side of’ Equation (.l(}).
Since the system 1s not isolated. 7 + m may now fluctuate, and the expressions
of E(n.m) and A(n.m) given in Equation (9) nmsl‘hc cmployed. A second
equation describing the evolution of the number 7 of atoms in the uppf:_r state
is needed. which involves the prescribed pump rate #(t). To summarize. the
evolution equations for m and n are

@zﬁ—.c/—j. []7)
dt
dn _ . (18)
— =7 — &+

di 4

where

E=En.m)+e(t), En.m)=nm, S§,=E. (19)
A =An.m)+alt). An.m)=(N—njm. S§,=A4. (20)
= gm+aqlt), 8= 0, (21)
F=J4+AJ(t). (22)

In the steady-state, the right-hand-sides of Equations (17) and (18) vanish,
and we have‘: J=E—-A4A=0. that is J = (2{n) — N){m) = a{m). Tllu§,
(m) =J /2 and 2(n) — N = =. This relation expresses the fact that ‘lhe sti-
mulated emission gain coefficient ((»)) minus the stimulated nbsotpltmn loss
coeflicient (N — (n)) equals in the steady state the linear loss cnc—:l‘hmcm %,

Next, observe that at small frequencies, the lel't-hamd-sides_ of the EqEza-
tions (17) and (18) may be neglected. The simple relation 2(¢) = __/(Q.lok-
lows. proving that the detection rate does not fluctuate (2 :bconslanl) if Fhe
pump is non-fluctuating or ‘quiet’ (# = constant). The relation 2(¢) = #(¢)
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holds at low frequencies even in the presence of internal ‘conservative' effects
such as gain compression (due. for example, to spectral hole burning). gain
guidance, or mesoscopic effects that occur when the thermal energy kg7 is
not large compared 1o the average level spacings (Arnaud er af. 1999, 2000).

A quiet pump is henceforth assumed. When the above equations are lin-
carized and Am, An are Fourier transformed. one obtains

JQAm =2(m)An+e¢ —a —gq. (23)
QAR = -2(m)An — 2 Am — ¢ + q. (24)

Let us recall that e, @ and ¢ are uncorrelated white-noise processes whose
spectral densities are equal to the corresponding average rates. After elimi-
nation of An from the above two cquations, Am may be expressed in terms of
uncorrelated noise sources

i a0 ;
Am =12e—a) — (2m) T (25)
JQ2(m) + 22(m) — Q°

We then proceed as in the previous section. evaluating the spectral density
of Am and integrating over frequency to obtain the variance of /. The result is
var(m) N+« |

e + = 2
(m) 4lm) 2 (26)

In the limit that 2 << V and (m) = N /2. the right-hand-side of Equation (26)
is | while the corresponding result in Section 2 relating to the isolated cavity
is 1/2. This is due to the singular behavior of the spectral density of Am at
Q =0 in the limit considered. Physically. this means that small losses allow
m(t) to drift slowly,

We are mostly interested in the detection rate fluctuation AQ = 2Am +q.
Notice that m and ¢ are correlated. Proceeding as in the previous section. we
obtain

Sap(Q) ~ ((_N + x)/4z(m)2)92 — 1 | o
0 (Q/2) + (1 = Q/2a(m))’

In the limit that z < N, (m) = N /2. the above result reduces to the one given
in Section 3 at high frequencies: Q > /2N,

Comparison between the results in Equations (16) and (27) is exemplified
in Fig. 2 for N =100, x =20 and m = N/2. In the exact treatment. the
spectral densities of the photodetection process go to zero at zero baseband
(or Fourier) frequencies. Note also that. for the parameter values considered,
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-~ 0
20 40 60 80 100 120

Fig. 2. Normalized spectral density Syo(Q)/0 of the detection rate 2 as a function of the normalized
baseband (or Fourier) frequency €. The number of atoms is N = 100 and the cavity loss rate (due 1o the
detection process) is z = 20, The average number of light quanta is {m) = N /2, Plain lines: exact result
from the discussion in Section 4. Dashed lines: approximate result for nearly isolated cavities, see Sec-

tion 3,

a relaxation oscillation peak appears. In the large optical power limit
({m) > 1), the above expression reduces to

S&_)(Q) == ; (28)

9 Q)+l

Expressions obtained from the present theory have invariably been found
to coincide with the Quantum Optics results when the same approximations
are made, essentially the large atom number approximation. In particular,
the simple expression (28) was first given by Yamamoto in 1986, see:
Yamamoto and Imamoglu (1999. see Fig. 15-10. b). The expression for
the atomic-number detection-rate correlation was first obtained from a the-
ory (Arnaud and Estéban 1990) similar to the one described in the present
paper.

5. Conclusion

The purpose of this paper was to show that, in the limit of a large number of

atoms, important results relating to laser light fluctuations. usually derived
on the basis of Quantum Optics. may be obtained in a much simpler manner.
This is so even if the detected light statistics is sub-Poissonian. The light field
enters only through its energy. which is quantized as a result of atomic
quantization and conservation of energy but not directly.

For the sake of simplicity. many effects have been neglected. But the theory
may be generalized to account for spontaneous carrier recombination.
phase-amplitude coupling, and complicated cavity structures (Siegman 1986.
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1995). Besides the intensity noise, other useful quantities may be evaluated,
particularly phase noise (Arnaud 1988. 1997). When the atoms get close to
one another. the upper and lower levels spread into bands called in the field
of Semiconductor Physics. ‘conduction” and “valence” bands. with kg7 small
compared with the widths of the bands. In that situation the Fermi-Dirac
distribution (see for example Chusseau and Arnaud 2001) is applicable. This
involves large changes in the parameter values in comparison with those
given in the present paper, but the general principles remain the same.
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Appendix
A. FIELD ENTROPY

The purpose of this appendix is to show that the present theory predicts an
increase of the system (single-mode cavity +atoms) entropy in the course of
time. as is required by the second law of thermodynamics. Since the single-
mode field is entirely defined by only one parameter, namely its energy, its
entropy vanishes. When atoms are introduced in an empty cavity, the matter
energy decreases. part of it being converted into field energy. The system
entropy nevertheless increases in the course of time because the number of
energy states available to matter increases.

Let W(n) denote the statistical weight of a collection of N atoms. with
energy n (number of atoms in the upper state). as given in Equation (1) of the
main text. If the N atoms are introduced in their upper state into an empty
cavity. initially (+ = 0). the matter statistical weight W (N) = | and the matter
entropy In[W(N)] vanishes. The system entropy S(0) vanishes also since no
entropy is ascribed to the field.

Suppose now that the system has reached a state of equilibrium (formally.
{ = oc). When an isolated system of total energy N consists of two parts, one
with energy »n and statistical weight W (n). and the second with energy m and
statistical weight W'(m), with n +m = N, its statistical weight reads (Kubo
et al. 1964, see p. 15)

N
Weystem (2€) = Z W(n)W' (N —n). L)

n=()

In the present situation, the (single-mode) field statistical weight W'(m) is
unity, and therefore the system entropy simplifies to
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S(e0) = In( I'I';_\an (20))

=1} i W(n)

= In(Z)
= N In(2). (A2)

if the expression of Z given in Equation (2) is used. Thus the system entropy
increases with time as asserted earlier.
For a total system energy U < N, the probability P(m) of having m light
quanta in the cavity is, more generally
N!
(U—-m)!(N=U+m)!’

P(m) x (A3)

where Equation (1) and the relation n +m = U have been used. When U is
somewhat less than N/2 (precisely N —2U > 1). first-order expansion of
In(P(m)) shows that P(m), as given in Equation (A3) is almost proportional
to exp(—pm), where the Boltzmann factor exp(—f) = (n)/(N — (n)). This is
essentially the thermal regime considered by Planck and Einstein at the turn
of the previous century.

To make contact with Quantum Optics concepts, let us show that the
entropy that Quantum Optics assign to single-mode fields is the difference
between the system entropy and the average matter entropy. We have indeed
the mathematical identity

S =In(Z)
— Z Wé”) In(Z)
e Z Wz('”) In(W(n)) — Z%"—) In(W(n)/Z). (A4)

where the sums are from #n = 0 to N. The entropy of matter is In(# (n)) if its
energy is known to be n. The probability that some »n value occurs in the
cavity is W(n)/Z. Accordingly, the first term in the final expression of
Equation (A4) is recognized as the average matter entropy.

On the other hand. the second term on the right-hand-side of Equa-
tion (A4) may be written as

Shield = — ZP(rn) In(P(m)). (AS)

m=0
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where the summation over n has been replaced by a summation over m. and
we have defined. as in the main text, P(m) = W(N — m)/Z. Equation (A5) is
the standard expression of field entropy. For U = N = 1000 atoms, for ex-
ample. one calculates from the above expressions that the system entropy
§ = 693.15 may be split into an average matter entropy Spuuer = 688.97 and a
field entropy Siciq = 4.18. On the other hand. in the limit U < N. the ex-
pression (A3) coincides with the expression obtained from the Quantum
Optics method that treats single-mode fields as quantized harmonic oscilla-
tors in contact with a thermal bath at temperature reciprocal f.
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